РАССМОТРЕНО на заседании методического объединения Протокол № 1 от 30 августа 2024 года

ПРИНЯТО на заседании педагогического совета Протокол № 1 от 30 августа 2024года

УТВЕРЖДАЮ Приказ № 105 /ОД от 03 сентября 2024 года

Директор МБОУ «ФМЛ» Д.А.Кельдышев

РАБОЧАЯ ПРОГРАММА

Решение конкурсных задач по математике 9 класс

Составитель: Масьярова Н.В. Соловьева М.В.

2024-2025 учебный год

Рабочая программа по курсу платных образовательных услуг «Решение конкурсных задач по математике» 9 класс Пояснительная записка

Преподавание курса строится как углубленное изучение вопросов, предусмотренных программой основного курса. Углубление реализуется на базе обучения методам и приемам решения математических задач, требующих высокой логической и операционной культуры, развивающих научно-теоретическое и алгоритмическое мышление учащихся. Занятия дают возможность шире и глубже изучать программный материал, задачи повышенной трудности, больше рассматривать теоретический материал и работать над ликвидацией пробелов знаний учащихся, и внедрять принцип опережения. Регулярно проводимые занятия по расписанию дают разрешить основную задачу: как можно полнее развивать потенциальные творческие способности каждого ученика, не ограничивая заранее сверху уровень сложности используемого задачного материала, повысить уровень математической подготовки учащихся.

Цель курса:

– развитие математического мышления, углубление знаний учащихся по основному курсу геометрии, получаемых на уроках.

Задачи курса:

- развивать у учащихся умения решать геометрические задачи повышенной сложности:
- создать возможности целенаправленной подготовки учащихся к углубленному изучению математики и успешному ее усвоению;
- познакомить учащихся с категориями задач, не связанных непосредственно с учебной программой, новыми методами рассуждений;
- формировать качества мышления учащихся, характерные для математической деятельности;
 - формировать представления об идеях и методах математики;
 - развивать интерес учащихся к геометрии.

Сведения о количестве часов.

Курс рассчитан на 1 час в неделю, в общей сложности 30 ч в учебный год.

Планируемые результаты освоения учебного курса

Учащиеся в результате освоения данного курса научатся:

- Доказывать и применять свойства геометрических фигур, которые не рассматриваются в школьном курсе, при решении олимпиадных задач и задач повышенной сложности по геометрии;
- Формулировать и доказывать теоремы, которые не рассматриваются в школьном курсе геометрии, применять их для решения задач;
- Использовать методы и приемы решения олимпиадных задач и задач повышенной сложности по геометрии, которые не рассматриваются в школьном курсе геометрии
- Видеть многовариантность условия задачи, выполнять построение чертежей, рассматривать все возможные случаи при решении задачи

• Использовать свойства геометрических фигур для решения задач практического характера.

Содержание курса

№	Тема раздела	Характеристика основных видов деятельности				
Раздел 1. Многоугольники (5 часов)						
1.	Решение комбинированных олимпиадных задач по теме «Треугольники».	Применять при решении олимпиадных задач теорему Пифагора, тригонометрические соотношения в				
2.	Решение комбинированных олимпиадных задач по теме «Треугольники».	прямоугольном треугольнике, формулы для вычисления площади треугольника, формулу Герона, теорему о биссектрисе внутреннего угла треугольника, свойство медиан треугольника.				
3.	Решение комбинированных олимпиадных задач по теме «Четырехугольники».	Применять при решении олимпиадных задач формулы площади четырехугольников, свойства и признаки четырехугольников.				
4.	Решение комбинированных олимпиадных задач по теме «Четырехугольники».	признаки тегырекуголынков.				
5.	Решение комбинированных олимпиадных задач по теме «Трапеция».	Применять при решении олимпиадных задач формулу площади трапеции, свойства и признаки равнобедренной трапеции, свойства прямоугольной трапеции.				
	Раздел 2. Пропорциональн	ые отрезки (8 часов)				
6.	Решение задач повышенной сложности на обобщенную теорему Фалеса.	Применять теорему Фалеса как ключевую задачу. Выполнять дополнительное построение.				
7.	Решение задач повышенной сложности на теорему Чевы.	Применять теорему Чевы при решении олимпиадных задач.				
8.	Решение задач повышенной сложности на теорему Менелая.	Применять теорему Менелая при решении олимпиадных задач.				
9.	Решение олимпиадных задач на применение теорем Чевы и Менелая.	Применять теорему Чевы и теорему Менелая при решении олимпиадных задач.				
10.	Олимпиадные задачи на использование равных отрезков в трапеции.	Решать нестандартные задачи на нахождение элементов трапеции.				
	I .	<u> </u>				

_

1.1	Опиминали из радану на маузмизиуз	Примонять тооромы с средуюм				
11.	Олимпиадные задачи на нахождение	Применять теоремы о среднем				
	пропорциональных отрезков в	пропорциональном в прямоугольном				
	прямоугольном треугольнике.	треугольнике в нестандартной				
1.0		ситуации.				
12.	Олимпиадные задачи на нахождение	Применять теоремы о				
	пропорциональных отрезков в	пропорциональных отрезках в				
	окружности.	окружности при решении олимпиадных				
10		задач.				
13.	Олимпиадные задачи на нахождение					
	пропорциональных отрезков в					
	окружности.					
Разде	л 3. Применение тригонометрии при рег	шении геометрических задач (5 часов)				
14.	Задачи повышенной сложности на углы	Применять теоремы о центральном и				
	в окружностях.	вписанном углах, об углах с вершиной				
		внутри и вне окружности при решении				
		олимпиадных задач. Применять				
		теорему синусов с продолжением.				
		Теорему косинусов.				
15.	Задачи повышенной сложности на	Находить радиусы вписанной и				
	комбинации окружности и	описанной окружностей в				
	многоугольника.	прямоугольном и равнобедренном				
		треугольниках				
16.	Задачи повышенной сложности на	Применять свойство и признак				
	комбинации окружности и	четырехугольника, вписанного в				
	многоугольника.	окружность. Применять свойство и				
		признак четырехугольника, описанного				
17.	Задачи повышенной сложности на	около окружности.				
	комбинации окружности и					
	многоугольника.					
18.	Теорема Птолемея.	Применять теорему Птолемея при				
		решении задач.				
	Раздел 4. Взаимное расположен	ие окружностей (4 часа)				
19.	Задачи повышенной сложности на	Решать олимпиадные задачи на				
	пересечение окружностей.	пересечение двух окружностей.				
20.	Задачи повышенной сложности на	Решать олимпиадные задачи на внешнее				
20.	касание окружностей.	и внутреннее касание двух и трех				
	manus onpumiorium.	окружностей				
21.	Задачи повышенной сложности на	Применять свойство внешней и				
21.	общие внешние и внутренние	внутренней касательной двух				
	касательные окружностей.	окружностей при решении				
	Ruculosibilible orpyrkitoeten.	олимпиадных задач.				
22.	Задачи повышенной сложности на	- олимпиадных задач.				
	общие внешние и внутренние					
	касательные окружностей.					
Разде	Раздел 5. Дополнительные построения при решении геометрических задач (4 часа)					
23.	Задачи повышенной сложности на	Применять построение дополнительных				
	проведение дополнительных отрезков и	отрезков и углов при решении				
	углов.	олимпиадных задач.				
	J1 11 O D.	олимпиадных задал.				

24.	Удвоение медианы.	Применять дополнительное построение			
		«удвоение медианы» при решении			
		олимпиадных задач.			
25.	Дополнительные построения в	Применять параллельный перенос в			
	трапеции.	трапеции при решении олимпиадных			
		задач. Применять достраивание			
		трапеции до треугольника.			
26.	Построение дополнительной	Применять построение вписанной и			
	окружности.	описанной окружности как			
		дополнительное.			
	Раздел 6. Задачи на клетчатой бумаге (1 час)				
27.	Задачи на клетчатой бумаге.	Уметь решать нестандартные задачи на			
		клетчатой бумаге. Знать основные			
		приемы решения задач на клетчатой			
		бумаге.			
Разде	ел 7. Задачи на вычисление площадей тр	еугольников и четырехугольников (3			
	часа)				
28.	Задачи повышенной сложности на	Находить площади многоугольников			
	разбиение на части или дополнение	разбиением на части или дополнением.			
	многоугольника.				
20	n v	TT			
29.	Задачи повышенной сложности на	Находить площадь четырехугольника со			
	нахождение площади четырехугольника	взаимно перпендикулярными			
	со взаимно перпендикулярными	диагоналями.			
	диагоналями. Применение теоремы				
	Пифагора в олимпиадных задачах.				
30.	Задачи повышенной сложности на	Находить отношение площадей			
	нахождение отношений площадей	подобных фигур при решении			
	подобных фигур.	олимпиадных задач			

Проверка планируемых результатов осуществляется на основе

- 1. Результатов участия обучающихся на этапах ВсОШ.
- 2. Результатов участия обучающихся в очных и (или) дистанционных олимпиадах, конкурсах, турнирах, играх, конференциях и т.д.

Литература:

- 1. Геометрия. Дополнительные главы к школьному учебнику 9 класса: Учебное пособие для учащихся школ и классов с углубленным изучением математики/ Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. М.: Просвещение, 1997.
- 2. Дидактические материалы по геометрии для 9 класса с углубленным изучением математики/ Б. Г. Зив, В. Б. Некрасов. -3-е изд. М.: Просвещение, 2001.
- 3. Р. К. Гордин. Геометрия. Планиметрия. 7-9 классы. -3-е изд., испр. М.: МЦНМО, 2019. 416 с.

Календарно-тематическое планирование

№ урока	Содержание программы	Дата проведения (по плану)	Дата проведения (по факту)	
Раздел 1. Многоугольники (5 часов)				
1	Решение комбинированных олимпиадных задач по теме «Треугольники».			
2	Решение комбинированных олимпиадных задач по теме «Треугольники».			
3	Решение комбинированных олимпиадных задач по теме «Четырехугольники».			
4	4.Решение комбинированных олимпиадных задач по теме «Четырехугольники».			
5	5.Решение комбинированных олимпиадных задач по теме «Трапеция».			
	Раздел 2. Пропорциональные отрезки	(8 часов)		
6	Решение задач повышенной сложности на обобщенную теорему Фалеса.			
7	Решение задач повышенной сложности на теорему Чевы.			
8	Решение задач повышенной сложности на теорему Менелая.			
9	Решение олимпиадных задач на применение теорем Чевы и Менелая.			
10	Олимпиадные задачи на использование равных отрезков в трапеции.			
11	Олимпиадные задачи на нахождение пропорциональных отрезков в прямоугольном треугольнике.			
12	Олимпиадные задачи на нахождение пропорциональных отрезков в окружности.			
13	Олимпиадные задачи на нахождение пропорциональных отрезков в окружности.			
	Раздел 3. Применение тригонометрии при решении	геометрическ	их задач	
	(5 часов)			
14	Задачи повышенной сложности на углы в окружностях.			
15	Задачи повышенной сложности на комбинации окружности и многоугольника.			
16	Задачи повышенной сложности на комбинации окружности и многоугольника.			
17	Задачи повышенной сложности на комбинации окружности и многоугольника.			
18	Теорема Птолемея.			

	Раздел 4. Взаимное расположение окружностей (4 часа)			
19	Задачи повышенной сложности на пересечение окружностей.			
20	Задачи повышенной сложности на касание окружностей.			
21	Задачи повышенной сложности на общие внешние и внутренние касательные окружностей.			
22	Задачи повышенной сложности на общие внешние и внутренние касательные окружностей.			
Разд	цел 5. Дополнительные построения при решении геог	метрических з	вадач (4 часа)	
23	Задачи повышенной сложности на проведение дополнительных отрезков и углов.			
24	Удвоение медианы.			
25	Дополнительные построения в трапеции.			
26	Построение дополнительной окружности.			
	Раздел 6. Задачи на клетчатой бумаге	(1 час)	•	
27	Задачи на клетчатой бумаге.			
Pas	здел 7. Задачи на вычисление площадей треугольния (3 часа)	сов и четырех	угольников	
28	Задачи повышенной сложности на разбиение на части или дополнение многоугольника.			
29.	Задачи повышенной сложности на нахождение площади четырехугольника со взаимно перпендикулярными диагоналями. Применение теоремы Пифагора в олимпиадных задачах.			
30.	Задачи повышенной сложности на нахождение отношений площадей подобных фигур.			